Статьи

Воздушный винт

Опубликовано: 22.08.2018

У этого термина существуют и другие значения, см. Винт .

Возду́шный винт ( пропе́ллер ) — лопастной агрегат работающий в воздушной среде, приводимый во вращение двигателем и являющийся движителем , преобразующим мощность (крутящий момент) двигателя в действующую движущую силу тяги . В.В., выполняющие (помимо функций движителя), дополнительные, либо иные функции, имеют специальные названия: ротор , маршевый винт, несущий винт ( винтокрылых летательных аппаратов ), рулевой винт , фенестрон , импеллер , вентилятор , ветряк , винтовентилятор .

Воздушный винт применяется в качестве движителя для летательных аппаратов ( самолётов , автожиров , цикложиров (циклокоптеров) и вертолётов с поршневыми и турбовинтовыми двигателями), а также в том же качестве — для экранопланов , аэросаней , аэро глиссеров и судов на воздушной подушке . У автожиров и вертолётов воздушный винт применяется также в качестве несущего винта , а у вертолётов ещё и в качестве рулевого винта.

В. В. работающий в качестве движителя, в сочетании с двигателем образуют винтомоторную установку (ВМУ) — входящую в состав силовой установки .

Лопасти винта, вращаясь, захватывают воздух и отбрасывают его в направлении, противоположном движению. Перед винтом создаётся зона пониженного давления, за винтом — повышенного.

В зависимости от способа использования воздушные винты делятся на тянущие и толкающие. В зависимости от наличия возможности изменения шага лопастей воздушный винт подразделяются на винты фиксированного и изменяемого шага.

Определяющими являются диаметр и шаг винта . Шаг винта соответствует воображаемому расстоянию, на которое передвинется винт, ввинчиваясь в несжимаемую среду за один оборот. Существуют винты с возможностью изменения шага как на земле, так и в полёте. Последние получили распространение в конце 1930-х годов и применяются практически на всех самолётах, кроме некоторых сверхлёгких, и вертолётах. В первом случае изменение шага требуется из-за необходимости получения большой тяги в широком диапазоне скоростей при мало изменяющихся (или неизменных) оборотах двигателя, соответствующих максимальной мощности, во втором — из-за невозможности быстрого изменения оборотов несущего винта .

Вращение лопастей воздушного винта приводит к разворачивающему эффекту, воздействующему на летательный аппарат, причины которого в следующем:

Реактивный момент винта . Любой воздушный винт, вращаясь в одну сторону, стремиться накренить самолет или развернуть вертолёт в противоположную сторону. Именно из-за этого возникает асимметрия при поперечном управлении самолётом. Например, самолет с винтом левого вращения совершает развороты, перевороты и бочки вправо гораздо легче и быстрее, чем влево. Этот же реактивный момент является одной из причин неуправляемого разворота самолета вбок в начале разбега. Закручивание струи винта . Воздушный винт закручивает воздушный поток, что также вызывает несимметричную обдувку плоскостей и хвостового оперения справа и слева, различную подъёмную силу крыла справа и слева и разницу в обдуве управляющих поверхностей. Несимметричность потока хорошо видно при авиационных химработах на примере распыляемого вещества. Гироскопический момент винта . Любое быстровращающиеся тело имеет гироскопический момент (эффект волчка), заключающиеся в стремлении сохранении своего положения в пространстве. Если принудительно заставить ось вращения гироскопа наклониться в какую-либо сторону, например вверх или вниз, то она не просто будет противодействовать этому отклонению, а будет уходить в направлении, перпендикулярном произведенному воздействию, то есть в данном случае вправо или влево. Так, при изменении в установившемся полёте угла тангажа самолёт будет стремиться самостоятельно поменять курс, а при начале разворота возникает стремление к самостоятельному изменению угла тангажа.

Все три причины разворота — реактивный момент, действие струи и гироскопический момент винта всегда действуют в одну сторону : при винте левого вращения разворачивают самолет вправо, а при винте правого вращения — влево. Этот эффект проявляется особенно сильно на мощных одномоторных самолётах при взлёте, когда самолёт движется с небольшой поступательной скоростью и эффективность воздушных рулей низкая. С ростом скорости разворачивающий момент ослабевает ввиду резкого увеличения эффективности рулей.

Для компенсации разворачивающего момента все самолёты делают несимметричными - как минимум, отклоняют руль направления от строительной оси самолёта.

Данного недостатка лишены соосные воздушные винты (кроме гироскопического эффекта).

Реактивный и гироскопический момент также присущ всем турбореактивным двигателям и учитывается в конструкции самолёта. Для компенсации реактивного момента винта вертолёта приходится применять рулевой винт, предотвращающий вращение фюзеляжа.

КПД [ править | править код ]

КПД воздушного винта называют отношение полезной мощности, затрачиваемой на преодоление сопротивления движению летательного аппарата , к мощности двигателя. Чем ближе КПД к 1, тем эффективнее расходуется мощность двигателя, и тем большую скорость или грузоподъемность может развить ЛА при той же энерговооружённости .

Положительные и отрицательные стороны [ править | править код ]

КПД современных воздушных винтов достигает 82—86 %, что делает их очень привлекательными для авиаконструкторов. Самолёты с турбовинтовыми силовыми установками значительно экономичнее , чем самолёты с реактивными двигателями. Однако воздушный винт имеет и некоторые ограничения, как конструктивного, так и эксплуатационного характера. Часть этих ограничений описана ниже.

«Эффект запирания». Этот эффект возникает либо при увеличении диаметра воздушного винта, либо при увеличении скорости вращения, и выражается в отсутствии роста тяги с увеличением мощности, передаваемой на винт. Эффект связан с появлением на лопастях винта участков с околозвуковым и сверхзвуковым течением воздуха (т. н. волновой кризис ).

Это явление накладывает существенные ограничения на технические характеристики самолётов с винтомоторной силовой установкой. В частности, современные самолёты с воздушными винтами, как правило, не могут развить скорость более 650—700 км/ч. Самый быстрый винтовой самолёт — бомбардировщик Ту-95  — имеет максимальную скорость 920 км/ч, где проблема эффекта запирания была решена применением двух соосных винтов с допустимыми размерами лопастей, вращающихся в противоположных направлениях. Повышенная шумность . Шумность современных самолётов в настоящее время регламентируется нормами ICAO . Воздушный винт классической конструкции в эти нормы не вписывается. Новые типы воздушных винтов с саблевидными лопастями создают меньший шум, но такие лопасти очень сложны и дороги в производстве.

Идея воздушного винта происходит от архимедова винта .

Известен чертеж Леонардо Да Винчи с изображением прообраза вертолета с несущим винтом . Винт всё ещё выглядит как архимедов.

В июле 1754 г. Михаил Ломоносов провел демонстрацию аэродромической модели. На ней лопасти уже уплощены, что приближает их к современному виду. Предполагается, что Ломоносов использовал образ китайской детской игрушки - бамбукового вертолётика.

Авиаконструкторы идут на определённые технические ухищрения, чтобы такой эффективный движитель, как воздушный винт, нашёл место на самолётах будущего.

Преодоление эффекта запирания. На самом мощном в мире турбовинтовом двигателе НК-12 крутящий момент силовой установки делится между двумя соосными воздушными винтами, вращающимися в разные стороны. Применение саблевидных лопастей. Многолопастный воздушный винт с тонкими саблевидными лопастями позволяет затянуть волновой кризис, и тем самым увеличить максимальную скорость полёта. Такое техническое решение реализовано на самолёте АН-70 . Разработка сверхзвуковых воздушных винтов. Эти разработки ведутся уже много лет, но никак не приведут к реальным техническим воплощениям. Лопасть сверхзвукового воздушного винта имеет крайне сложную форму, что затрудняет её прочностной расчёт. Кроме того, экспериментальные сверхзвуковые винты оказались очень шумны. Импеллер . Заключение воздушного винта в аэродинамическое кольцо. Весьма перспективное направление, поскольку позволяет снизить концевое обтекание лопастей, снизить шумность, и повысить безопасность (защищая людей от увечий). Однако вес самого кольца служит ограничивающим фактором для широкого распространения такого конструкторского решения в авиации. Зато на аэросанях, аэроглиссерах, судах на воздушной подушке и дирижаблях импеллер можно увидеть достаточно часто. Вентилятор . Так же, как импеллер, заключён в кольцо, но кроме того, имеет входной и иногда выходной направляющий аппарат. Направляющий аппарат представляет собой систему неподвижных лопастей (статор), позволяющих регулировать поток воздуха, попадающий на ротор вентилятора, и тем самым поднять его эффективность. Очень широко применяется в современных авиационных двигателях.

Новости

Где купить держатель для смартфона в авто

Смартфонами пользуются практически все водители. Часто они используют iPhone, и водителям необходимо крепить свои смартфоны, используя таких.

Где купить рассеиватель для штатной вспышки

Рассеиватель для вспышки - незаменимая вещь для любого фотографа - как для профессионала, так и для любителя. Любое помещение, где есть проблема с освещением, при съемке со вспышкой получается мрачным,

ПРЕДОХРАНИТЕЛИ ВАЗ-21099 (НАЗНАЧЕНИЕ, НОМИНАЛ). ВНЕШНИЕ СВЕТОВЫЕ ПРИБОРЫ (СХЕМА)
На схеме световой сигнализации и освещения детально показано расположение в цепи как самих световых приборов, так и подробное положение контактов на реле и переключателях управления приборами. По схеме

Укладка клинкерного кирпича
Узнайте как можно больше информации об используемом клинкерном кирпиче. Это нужно для того, чтобы правильно определиться с выбором кладочного раствора. Самым важным параметром для клинкерного кирпича

Двигатель 406 - описание
Двигатель внутреннего сгорания марки ЗМЗ 406 производится на Заволжском моторном заводе, который является основным поставщиком комплектующих для Горьковского автозавода (ГАЗ). Также предприятие ЗМЗ занимается

Тюнинг выхлопной системы дизельного
Мы занимаемся не только тюнингом и ремонтом выхлопных систем, но изготавливаем также отдельные элементы к ним — глушители, резонаторы, катализаторы, даунпайпы, равнодлинные коллекторы и выхлопные системы

Глохнет на холостых ВАЗ 2105 карбюратор
Машина глохнет на холостых. Видео Причины почему глохнет машина на ходу Ваз Lada 2101 2102 2103 2104 2105 2106 2107 Холостой-холостой, снова ищем Холостой!!! Падают обороты двигателя (глохнет) при прогреве.

Где заказать чип-тюнинг
Решили воспользоваться чип-тюнингом? Решили воспользоваться возможностью чип-тюнинга? У компании, которая имеет собственный ресурс в интернете по адресу - http://chip-kzn.ru/ вы сможете заказать данную

Проверка автомобиля по VIN
Официальная проверка автомобиля по VIN коду и гос номеру по всем базам данных – ГИБДД, ФССП, наличие судебных ограничений, нахождение в залоге у банков, база угонов, база ДТП, база перекупщиков,

Купить номер на авто
Все мы знаем о том, что каждому из нас хочется как-то выделиться из общей массы, так же, здесь не являются исключением автомобилисты. Кто-то для того, что бы не сливаться с общей массой тюнингу не свой

rss